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A Note on the Boltzmann Equation
for Hard Spheres

Y. Pomeau!
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A simple form of the Boltzmann kinetic equation for hard spheres is proposed.

In the course of investigations on the structure of shock waves at large
Mach number, I have been led to look for a form of the Boltzmann
equation for hard spheres that were as simple as possible. The form that I
have found is, as far as I know, original and could be useful (for instance)
in numerical researches on the kinetic theory of the hard sphere gas. Let
fle, t) be the velocity distribution, the Boltzmann kinetic equation for the
hard sphere system reads"

o
= =BLf./] (1)
where
B=B,+ B,
with
B= —4n | de, f(¢,) le—¢,i f(c) 2)
and
Bgzjdcljdﬁf<czcl+g[c—c1|>
(R Feal)le—cl G)
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# being the unit vector [j di=4rn]. A few simple transformation give the
following expression for the loss term (B,), in the case of isotropic dis-
tributions (f depends on |¢| only):

By= 87| de, ¢ f(c)) fle) Lic, ¢,)
0

where

2 .
L(c,c1)=3—c(3cz+cf) if czc

and

—2—(3cf+c2) if c<e,
3¢,

The gain term B, is less easy to transform. We shall obtain two suc-
cessive expressions, the first one valid for an arbitrary distribution [Eq. (4)
below], the second one for an isotropic distribution [Eqgs. (5) and (8)
below]. This last one only is interesting for computational purposes,
because it reduces (3) to a two-dimensional integral, although in general
the form given in (4) does not lower the number of integration variables.

Let us write { dA(~- ) as £ {dnd(n*—1)(~-)é=Dirac function, and
make in (3) the changes ¢, —» ¢+ & and n— n=N/&. This yields from (3)

Bg:%Jd};JdN&(Nz—éz)f<c+§‘%‘N‘>f<c+é_7N>

Replace now & by £* =&+ 2¢ as integration variable, and then take
x, = (§* + N)/2 as integration variables instead of N and &*

Bg=4fdx+ J‘dx, Se (Xo +x_)— =X, X_)f(x,)f(x_) 4)

This is our general expression for B,. Let us now restrict ourselves to
the case of isotropic distributions. In that case, B, depends on |¢| = ¢ only,
and one has

1
By=o f dé B,(c)
where ¢ is the unit vector such that ¢ = éc. Thus (4) can now be written as

Bg=4j°° dx+x2+f(x+)ro dx_ x> f(x_YM(x,,x_;¢) (5a)
0 0
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where
1
M(x+,x_;c)=Efdéfd)2+ fd)%‘ Se (X, +x_)—c*—x, x_) (5b)

%, being the unit vector(s) parallel to x,. Performing in (5.b) the ¢
integration, one finds

1 2
Z;fd@é(c-(h+x,)*c’—x+-x_)

1 cz+x+-x_>
- ks el 6
2c|x++x*|X[‘l’“]<c[x++x| (6)

where y;_, ,7(u) is the characteristic function of the [ —1,+1] interval.
Its value is +1 if —1<u< +1 and zero otherwise. From (5) and (6)

Mx,,x_;c)=

4_n2J'+1 dv

c g (X2 +x2 +2x,x_v)?

y l: A+x,x_v ] ™
Al—1,+11
L0+ o(x2 +x2 +2x,x_v)?

This last integral can be computed, and one obtains our final result.
The support of M(x.,x_;c) as a function of x, and x_ is the quarter
plane x, >0. From the energy conservation x% + x2 >¢? so that M is
nonzero outside the quarter circle x% + x? = ¢” only. The consideration of
the argument of the characteristic function in (7) leads one to introduce the
quartic @ of Cartesian equation x2 x2 +¢*=(x2 +x2)¢? and to divide
the quarter plane into three regions: Iy, _, are in between Q and the circle
of Cartesian equation x% +x2 =¢> In I'; ,x, > x_ although x, <x_ in
I'; ;. Let furthermore I, be the region outside of Q.

Thus
2 2
in I, M(x,,x_;c)=— (8.a)
x.c
. 2n?
inI'y, M(x+’x~;c)=x_c (8.b)
and
. T[z
inl, M(x,,x_;¢)=
X, x_c

x [(x% +x2 +2w")"2 — (x2 +x2 —2w?)12] (8.c)
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where w?=[c*(x% +x%)~—c¢*]"% As a function of x,, M(x,,x_;c) is
continuous, but has discontinuous first derivatives in Q and on the first
bisectrix.
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